TY - GEN T1 - Phase-separated protein dynamics are affected by fluorescent tag choice AU - Uebel, Celja J AU - Phillips, Carolyn M DO - 10.17912/micropub.biology.000143 UR - http://beta.micropublication.org/journals/biology/micropub-biology-000143/ AB - Biological liquid-liquid phase separation gives rise to dense protein-protein or protein-RNA condensates that are distinct from the surrounding bulk cytoplasmic or nuclear phase. These condensates, comprised of many multivalent, weak, and hydrophobic interactions, perform a wide variety of physiological functions and are sensitive to changes in the cellular environment (Shin and Brangwynne, 2017). One notable phase-separated condensate is the P granule, a C. elegans germline-specific mRNA surveillance center. While the liquid nature of P granules was first described by Brangwynne et al. (2009), additional P granule properties and protein dynamics have been examined with a variety of in vivo techniques. The advances in CRISPR/Cas9 gene editing techniques make it possible to endogenously tag PGL-1, a major constituent of P granules, and study protein dynamics in vivo via live fluorescent imaging. PGL-1 tagged with Green Fluorescent Protein (GFP) is widely used for the study of P granules, and forms distinct perinuclear germline foci consistent with previous observations of P granules (A, top row) (Pitt et al., 2000; Strome and Wood, 1982). PY - 2019 JO - microPublication Biology ER -