TY - GEN T1 - OP50, a bacterial strain conventionally used as food for laboratory maintenance of C. elegans, is a biofilm formation defective mutant AU - Arata, Yukinobu AU - Oshima, Taku AU - Ikeda, Yusaku AU - Kimura, Hiroshi AU - Sako, Yasushi DO - 10.17912/micropub.biology.000216 UR - http://beta.micropublication.org/journals/biology/micropub-biology-000216/ AB - OP50 is an Escherichia coli strain conventionally used as a bacterial food in the laboratory maintenance of Caenorhabditis elegans on agar plates. It has also been used to feed C. elegans in longitudinal cultures within microfluidic devices (MFDs) (Hulme et al., 2010; Li et al., 2015), where it has been subject to killing by ultraviolet irradiation or pasteurization performed to suppress clogging due to biofilm formation and aggregation (Li et al., 2015; Zhuo et al., 2017). However, the killed bacterial food can change C. elegans aging dynamics, likely due to influences on C. elegans physiology (Saul et al., 2009; Gruber et al.;, 2007; Garigan et al., 2002). Further development of longitudinal culturing systems for C. elegans in MFDs requires elucidation of the mechanisms that underlie food bacteria clogging and delineation of culture conditions in which living bacterial food can be incorporated without clogging. Bacteria switch from planktonic growth to aggregated growth under conditions of environmental stress, in the presence of toxins (e.g. antibiotics), and when there is a lack of nutrients (Trunk et al., 2018). Biofilms, such as dental plaque, are bacterial communities that are organized in a film-like form in which they are embedded in a self-produced polymeric matrix on biotic or abiotic surfaces; pellicles are floating biofilms that form at liquid-air interfaces. Meanwhile, autoaggregations are aggregated communities of bacteria suspended in solution, such as bacterial flocs formed in activated sludge. Biofilms and autoaggregations are formed by both shared and independent genetic and physico-chemical mechanisms (Trunk et al., 2018; Berne et al., 2018; Berne et al., 2015). In this study, we examined OP50 biofilm formation. PY - 2020 JO - microPublication Biology ER -