microPublication

Get Your Data Out, Be Cited

  • About
    • Editorial Policies
      • Editorial Staff
      • Editorial Board
      • Criteria For Publication
      • Publishing Information
      • Data Sharing Policy
    • For Authors
      • Preparation And Submission Of A Manuscript
      • Peer Review Process
      • Following Acceptance
      • Appeals
    • For Reviewers
    • Why micropublish?
  • Submit a microPublication
  • Journals
    • microPublication Biology
      • Editorial Board
  • microPublications
    • Biology
      • Species
        • Arabidopsis
        • C. elegans
        • D. discoideum
        • Drosophila
        • Human
        • Mouse
        • S. cerevisiae
        • S. pombe
        • Xenopus
        • Zebrafish
      • Categories
        • Phenotype Data
        • Methods
        • Expression Data
        • Genotype Data
        • Integrations
        • Genetic Screens
        • Models of Human Disease
        • Software
        • Interaction data
        • Database Updates
        • Electrophysiology Data
        • Phylogenetic Data
        • Science and Society
        • Biochemistry
  • Contact
  • More
    • Archives
    • FAQs
    • Newsletter
microPublication / Biology / The root hair defective phenotype...
The root hair defective phenotype of Arabidopsis thaliana Pol IV subunit mutant nrpd1a-3 is associated with a deletion in RHD6
Rakesh David1, 2, R. Daniel Kortschak1 and Iain Searle1
1School of Biological Sciences, The University of Adelaide, The University of Adelaide and Shanghai Jiao Tong University Joint International Centre for Agriculture and Health, Adelaide, South Australia 5005, Australia
2Present address: ARC Centre of Excellence in Plant Energy Biology, The School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Adelaide, South Australia 5005, Australia
Correspondence to: Iain Searle (iain.searle@adelaide.edu.au)
Figure 1: Root hair defective phenotype of Pol IV allele nrpd1a-3 and identification of a DNA deletion in Root Hair Defective 6 (RHD6). A. Root hair phenotype of Col-0 (wild type) and NRPD1A T-DNA mutant nrpd1a-3.  Seedlings were grown in a vertical orientation for 7 days. Scale bar = 0.5 cm. B. Root hair numbers of Col-0, C-24, nrpd1a-1, nrpd1a-2, nrpd1a-3 and nrpd1a-4. Alleles nrpd1a-1 and nrpd1a-2 are in the C-24 accession and alleles nrpd1a-3 and nrpd1a-4 are in the Col-0 accession. Between 18-20 seedlings roots were examined for each genotype, with an asterisk * denoting a significant difference between wildtype and mutant (p<0.005). Error bars show standard error. C. Top, shows a schematic representation of RHD6 where the green boxes indicate exons and the intervening line black lines indicate introns. Below, is a genome browser view showing whole genome Illumina re-sequencing reads that aligned to RHD6 in either Col-0 or nrpd1a-3. Green bars indicate sequence reads aligned to the top strand and red bars indicate reads aligned to the bottom strand. In nrpd1a-3, the region with no aligned sequence reads indicates the deleted region. Scale bar = 100 bp D. Schematic representation of RHD6 showing the 1,310 bp deletion in nrpd1a-3. The arrows represent oligo-nucleotide primers that were used for semi-quantitative RT-PCR. E. RHD6 transcripts was amplified from Col-0, nrpd1a-3 and nrpd1a-4 by semi-quantitative RT-PCR and the products were separated on an agarose gel. For each genotype two biological replicates were derived from a pool of 10 seedlings. PP2AA3 was used as a positive control.

Description

In eukaryotes, RNA and chromatin-based pathways control transposable elements (TE) to minimize the deleterious consequences of genetic invasion, transposition, mutation and chromosome instability (Matzke and Mosher, 2014). In higher plants, the multi-subunit nuclear RNA polymerase IV (Pol IV) specializes in transcribing the 24 nucleotide class of small RNAs that target TE’s for DNA cytosine methylation and silencing in the RNA-directed DNA methylation (RdDM) pathway (Herr et al., 2005; Onodera et al., 2005). In Arabidopsis, the Pol IV has two alternative subunits encoded by the NRPD1a and NRPD1b and a common subunit encoded by NRPD2A (Herr et al., 2005; Kanno et al., 2005; Onodera et al., 2005; Pontier et al., 2005). The null mutant for NRPD1a is defective in the RdDM pathway and also displays a late flowering phenotype under short day conditions (Pontier et al., 2005; Eamens et al., 2008).

Interestingly, we observed a root hair defective phenotype in the nrpd1a-3 mutant allele which has not been previously reported (Fig. 1A). When grown on vertically oriented agar medium, nrpd1a-3 seedlings lacked root hairs or defective root hair elongation when compared to the Col-0 wild type control which showed normal root hair distribution and length in the root maturation zone (Fig. 1A). Further investigation of other NRPD1A mutant alleles, nrpd1a-1, nrpd1a-2, in the C-24 accession, and nrpd1a-4 in the Col-0 accession revealed that these alleles had a similar root hair number to the wild type controls (Fig. 1B). To investigate if the root hair defective phenotype in nrpd1a-3 was a spurious event in our laboratory’s seed stock or an earlier event, we re-ordered the same mutant from the ABRC stock Centre and tested the root hair phenotype. We observed the same root hair defective phenotype in both nrpd1a-3 seed stocks. We next crossed the nrpd1a-3 mutant (Col-0) to wild type accession C-24, self-fertilized the F1to create a F2mapping population and mapped polymorphic DNA markers across the 5 chromosomes revealed the gene for the root hair defective phenotype was located between DNA markers ciw3 and F26B6 on chromosome 1 (Berendzen et al., 2005). Next we whole-genome sequenced DNA from both Col-0 and nrpd1a-3 using Illumina short read technology, and after GATK (McKenna et al., 2010) and DELLY (Rausch et al., 2012) analysis of the annotated gene models in the genetic window, we identified only one nucleotide mutation, a 1,310 bp deletion in Root Hair Defective 6 (RHD6), in nrpd1a-3 (Fig. 1C). RHD6 is a bHLH transcription factor that positively regulates root hair initiation (Masucci and Schiefelbein, 1994) and loss of function mutations cause a root hair defective phenotype. Semi-quantitative RT-PCR showed RHD6 mRNA was undetectable in the nrpd1a-3 roots when compared to Col-0 wild-type and nrpd1a-4 suggesting that the loss of RHD6 was the likely candidate for the root hair defective phenotype observed in the nrpd1a-3 mutant (Fig. 1D). We confirmed the 1,310 bp deletion that deleted part of exon 2, all of exons 3-5 and part of the 3’ UTR by PCR and Sanger sequencing. Together the genetic mapping and the undetectable RHD6 mRNA transcript strongly suggests that the root hair defective phenotype only observed in the nrpd1a-3 mutant background is caused by the deletion in RHD6. In the Arabidopsis research community, sometimes phenotypes caused by an unlinked mutation to a gene of interest have been incorrectly associated in the research field for many years (Enders et al., 2015; Habets and Offringa, 2015), and so our discovery of a deletion in RHD6 in nrpd1a-3 will allow the community to not incorrectly associate the defective root hair phenotype with POLIV function.

Reagents

For soil grown A. thaliana plants, seeds were germinated in soil and seedlings grown under halogen lights at 21°C under 16-hour light (130 µmoles/m2/sec) and 8-hour dark conditions as previously described (David et al., 2017). For vertical plate experiments, seeds were chlorine gas sterilized as previously described (Burgess et al., 2015) stratified at 4°C in the darkness and then transferred to grow under halogen lights of 16-hour light, 8-hour night conditions (130 µmoles/m2/sec). Seedlings were grown in a vertical orientation for 7 days on half-strength Murashige and Skoog (MS) medium containing 1% sucrose. Col-0 or C-24 accessions were used as wild-type controls. The NRPD1A two SALK T-DNA insertion lines in the Col-0 accessions for NRPD1A were nrpd1a-3 (SALK_128428) and nrpd1a-4 (SALK_083051). Mutants nrpd1a-1 and nrpd1a-2 are in the C-24 accession (Herr et al., 2005). ImageJ was used to measure the number of root hairs longer than 2 mm from an image.  Statistical analyses of the data were made using Student’s t-test.

RT-PCR and PCR

Total RNA was isolated from seedling roots using the Tri Reagent (Sigma Aldrich) as described by Wang et al., 2017. Briefly, cDNA for semi-quantitative RT-PCR was synthesized using Superscript III kits as per the manufacturer’s recommendation (Invitrogen) from 2 mg of total RNA that was oligo(dT) primed. Genomic DNA for PCR or sequencing was isolated using the Dellaporta procedure (Dellaporta et al., 1983) with small modifications as previously described from two-week-old seedlings grown on agar medium. RT-PCR and PCR reagents and thermal cycling conditions were previously described in David et al., 2017.

Gene name Locus identifier Application Forward primer sequence Reverse primer sequence
RHD6 AT1G14920 RT-PCR CCAATGGCACCAAGGTTGATTT TTTCCCCCGATATTATTACAACGTA
PP2AA3 AT1G13320 RT-PCR control GGGCAATGCAGCATATAGTTC TGGGTCTTCACTTAGCTCCAC
RHD6 AT1G66470 detection of deletion AGGGCAACAACATGAGCTACGGC TAAGAACACGTATCCCTAAT

Whole-genome sequencing and Bioinformatic analysis

Illumina sequencing libraries were prepared using NEBNext Ultra DNA library Prep kit as per the manufacturer’s recommendation and sequenced on the Illumina Hi-Seq system. Illumina sequence reads were trimmed by using TrimGalore! (Krueger, 2015), sequence quality assessed by using FastQC (Andrews, 2010), detection of nucleotide variation was performed by using DELLY(Rausch et al., 2012)and GATK (McKenna et al., 2010). All bioinformatic analysis were performed using default parameters. Sequence data from this article can be found in the SRA accession ID: PRJNA590836.

Gene sequence data from this article can be found in The Arabidopsis Information Resource (TAIR) under the following accession numbers: NRPD1A At1g63020; RHD6 At1g66470 and PP2AA3 At1g13320.

The nrpd1a-3 rhd6-4 strain has been submitted to ABRC (Stock ID CS72356).

Acknowledgments

We thank the ACRF Cancer Genomics (Adelaide, Australia) staff for assistance with the genome sequencing.

References

Andrews S, 2010. FastQC: a quality control tool for high throughput sequence data. Available online at: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Berendzen K, Searle I, Ravenscroft D, Koncz C, Batschauer A, Coupland G, Somssich IE, Ulker B. 2005. A rapid and versatile combined DNA/RNA extraction protocol and its application to the analysis of a novel DNA marker set polymorphic between Arabidopsis thaliana ecotypes Col-0 and Landsberg erecta. Plant Methods 1(1): 4.
PubMed
Burgess AL, David R, Searle IR. 2015. Conservation of tRNA and rRNA 5-methylcytosine in the kingdom Plantae. BMC Plant Biol 15: 199.
PubMed
David R, Burgess A, Parker B, Li J, Pulsford K, Sibbritt T, Preiss T, Searle IR. 2017. Transcriptome-Wide Mapping of RNA 5-Methylcytosine in Arabidopsis mRNAs and Noncoding RNAs. The Plant Cell 29(3): 445-460.
PubMed
Eamens A, Vaistij FE, Jones L. 2008. NRPD1a and NRPD1b are required to maintain post-transcriptional RNA silencing and RNA-directed DNA methylation in Arabidopsis. Plant J 55(4): 596-606.
PubMed
Enders TA, Oh S, Yang Z, Montgomery BL, Strader LC. 2015. Genome Sequencing of Arabidopsis abp1-5 Reveals Second-Site Mutations That May Affect Phenotypes. Plant Cell 27(7): 1820-1826.
PubMed
Habets ME, Offringa R. 2015. Auxin Binding Protein 1: A Red Herring After All? Mol Plant 8(8): 1131-1134.
PubMed
Herr AJ, Jensen MB, Dalmay T, Baulcombe DC. 2005. RNA polymerase IV directs silencing of endogenous DNA. Science 308(5718): 118-120.
PubMed
Kanno T, Huettel B, Mette MF, Aufsatz W, Jaligot E, Daxinger L, Kreil DP, Matzke M, Matzke AJ. 2005. Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nat Genet 37(7): 761-765.
PubMed
Krueger F. 2015. Trim Galore!: A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files, with some extra functionality for MspI-digested RRBS-type (Reduced Representation Bisufite-Seq) libraries methylation. Available online at: https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
Masucci JD, Schiefelbein JW. 1994. The rhd6 Mutation of Arabidopsis thaliana Alters Root-Hair Initiation through an Auxin- and Ethylene-Associated Process. Plant Physiol 106(4): 1335-1346.
PubMed
Matzke MA, Mosher RA. 2014. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15(6): 394-408.
PubMed
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9): 1297-1303.
PubMed
Onodera Y, Haag JR, Ream T, Costa Nunes P, Pontes O, Pikaard CS. 2005. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120(5): 613-622.
PubMed
Pontier D, Yahubyan G, Vega D, Bulski A, Saez-Vasquez J, Hakimi MA, Lerbs-Mache S, Colot V, Lagrange T. 2005. Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev 19(17): 2030-2040.
PubMed
Rausch T, Zichner T, Schlattl A, Stutz AM, Benes V, Korbel JO. 2012. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28(18): i333-i339.
PubMed
Wang D, Qu, Yang L, Zhang Q, Liu Z, Do T, Adelson D, Wang Z, Searle I, Zhu J. 2017 Transposable elements (TEs) contribute to stress-related long intergenic noncoding RNAs in plants. The Plant J 90(1):133-146.
PubMed

Funding

This research was supported by Australian Research Council grant DP190101303.

Author Contributions

Rakesh David: Investigation, Writing - original draft, Writing - review and editing, Visualization
R. Daniel Kortschak: Investigation, Writing - review and editing
Iain Searle: Investigation, Writing - original draft, Writing - review and editing, Visualization, Conceptualization, Funding acquisition, Project administration, Supervision.

Reviewed By

Anonymous

History

Received: November 20, 2019
Accepted: December 5, 2019
Published: December 12, 2019

Copyright

© 2019 by the authors. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation

David, R; Kortschak, RD; Searle, I (2019). The root hair defective phenotype of Arabidopsis thaliana Pol IV subunit mutant nrpd1a-3 is associated with a deletion in RHD6. microPublication Biology. 10.17912/micropub.biology.000196.
Download: RIS BibTeX
microPublication Biology is published by
1200 E. California Blvd. MC 1-43 Pasadena, CA 91125
The microPublication project is supported by
The National Institute of Health -- Grant #: 1U01LM012672-01
microPublication Biology:ISSN: 2578-9430