microPublication

Get Your Data Out, Be Cited

  • About
    • Editorial Policies
      • Editorial Staff
      • Editorial Board
      • Criteria For Publication
      • Publishing Information
      • Data Sharing Policy
    • For Authors
      • Preparation And Submission Of A Manuscript
      • Peer Review Process
      • Following Acceptance
      • Appeals
    • For Reviewers
    • Why micropublish?
  • Submit a microPublication
  • Journals
    • microPublication Biology
      • Editorial Board
  • microPublications
    • Biology
      • Species
        • Arabidopsis
        • C. elegans
        • D. discoideum
        • Drosophila
        • Human
        • Mouse
        • S. cerevisiae
        • S. pombe
        • Xenopus
        • Zebrafish
      • Categories
        • Phenotype Data
        • Methods
        • Expression Data
        • Genotype Data
        • Integrations
        • Genetic Screens
        • Models of Human Disease
        • Software
        • Interaction data
        • Database Updates
        • Electrophysiology Data
        • Phylogenetic Data
        • Science and Society
        • Biochemistry
  • Contact
  • More
    • Archives
    • FAQs
    • Newsletter
microPublication / Biology / Mapping results for a set...
Mapping results for a set of cGAL effectors and drivers
Sophie J. Walton1, Han Wang1, Jonathan Liu1 and Paul Sternberg1,2
1Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
2Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, USA
Correspondence to: Paul Sternberg (pws@caltech.edu)

Description

Recently, the GAL4-UAS system (cGAL) has been adapted for use in C. elegans for control of gene expression across 15°C – 25°C (Wang et al., 2017). In order to create a desired gene expression pattern, one crosses a transgenic strain containing a driver construct with another strain containing an effector gene. Here we mapped several cGAL driver and effector integrations. We first crossed each of the cGAL driver and effector strains with N2 males, picked the heterozygous male progeny, crossed them with hermaphrodites of the mapping strain (DA438), picked L4 hermaphrodites with the corresponding transgenic marker of the driver or effector strain and scored the progeny in the next generation. The DA438 strain contains six recessive mutations, each of which locates on one of the six chromosomes and produces visible phenotypes (Bli on chromosome I, Rol on II, Vab on III, Unc on IV, Dpy on V, and Lon on X (Avery, 1993). F2 progeny with each of the six phenotypes were selected and examined for the presence or absence of the dominant marker associated with the transgene. In the cases where the dominant transgene marker is unlinked to the recessive phenotypic marker, about three quarters of the F2 progeny will have the dominant marker. If the two markers are linked, very few or no animals are expected to have the dominant transgenic marker. The following tables summarize the mapping results for each cGAL strain, stating the ratios of the F2 mutant progeny with and without the dominant transgenic marker.

Effectors

15xUAS::GFP for Cell Labeling

Strain Genotype Location Bli Rol Vab Unc Dpy Lon
PS6843 syIs300 LGV 6:1 7:1 6:4 7:3 0:8 8:0
PS7149 syIs390 LGX 7:3 8:2 7:3 7:1 9:1 0:6

15xUAS::mKate2 for cell Labeling

Strain Genotype Location Bli Rol Vab Unc Dpy Lon
PS7136 syIs378 LGI 1:5 9:1 7:0 5:3 6:3 8:2

15xUAS::hChR2(H134R)::YFP for neuronal activation

Strain Genotype Location Bli Rol Vab Unc Dpy Lon
PS7044 syIs341 LGIV 8:1 8:2 11:0 1:11 6:1 7:3
PS7045 syIs342 LGII 6:0 0:9 5:1 6:0 7:3 7:0

15xUAS::TeTx (Tetanus toxin light chain) for blocking synaptic transmission

Strain Genotype Location Bli Rol Vab Unc Dpy Lon
PS7201 syIs421 LGIV 5:0 7:2 5:1 1:6 7:1 8:3

15xUAS::HisCl1::SL2::GFP for neuronal inhibition

Strain Genotype Location Bli Rol Vab Unc Dpy Lon
PS7199 syIs371 LGIII 9:1 6:0 0:6 4:1 6:0 4:1
PS7107 syIs373 LGI 0:8 7:3 10:1 6:3 10:1 8:1
PS7108 syIs374 LGV 8:1 7:1 7:1 7:1 0:10 7:1

Drivers

Pharyngeal muscle driver, Pmyo-2

Strain Genotype Location Bli Rol Vab Unc Dpy Lon
PS6844 syIs301 LGV 3:2 7:1 6:4 7:3 0:7 7:0

Heat shock driver, Phsp-16.41

Strain Genotype Mapped Location Bli Rol Vab Unc Dpy Lon
PS7169 syIs398 syIs337 syIs398 LGIII 8:0 7:0 1:4 7:0 7:0 6:0
PS7172 syIs401 syIs337 syIs401 LGIII 7:0 8:0 0:8 5:3 8:2 7:1

Pan-neuronal driver, Prab-3

Strain Genotype Location Bli Rol Vab Unc Dpy Lon
PS6961 syIs334 LGX 6:1 5:1 6:1 5:1 8:2 2:7

Intestinal driver, Pnlp-40

Strain Genotype Location Bli Rol Vab Unc Dpy Lon
PS6935 syIs320 LGV 7:0 7:0 5:1 5:1 0:7 6:1

Body muscle driver, Pmyo-3

Strain Genotype Location Bli Rol Vab Unc Dpy Lon
PS6936 syIs321 LGI 1:6 4:2 4:1 6:1 6:1 5:0

Reagents

Effector strains

PS6843 syIs300[15xUAS::Δpes-10::GFP::unc-54 3’UTR + ttx-3p::RFP + pBlueScript] V

PS7149 syIs390[15xUAS::Δpes-10::GFP::let-858 3’UTR + ttx-3p::RFP + 1kb DNA ladder(NEB)] X

PS7136 syIs378[15xUAS::Δpes-10::mKate2::let-858 3’UTR + unc-122p::GFP + 1kb DNA ladder(NEB)]I

PS7044 syIs341[15xUAS::Δpes-10::hChR2(Y134R)::YFP::let-858 3’UTR + ttx-3p::RFP + pBlueScript] IV

PS7045 syIs342[15xUAS::Δpes-10::hChR2(Y134R)::YFP::let-858 3’UTR + ttx-3p::RFP + pBlueScript] II

PS7201 syIs421[15xUAS::Δpes-10::TeTx::let-858 3’UTR + myo-2p::NLS::GFP + pBlueScript] IV

PS7199 syIs371[15xUAS::Δpes-10::HisCl1::SL2::GFP::let-858 3’UTR + unc-122p::GFP + 1kb DNA ladder(NEB)] III

PS7107 syIs373[15xUAS::Δpes-10::HisCl1::SL2::GFP::let-858 3’UTR + unc-122p::GFP + 1kb DNA ladder(NEB)] I

PS7108 syIs374[15xUAS::Δpes-10::HisCl1::SL2::GFP::let-858 3’UTR + unc-122p::GFP + 1kb DNA ladder(NEB)] V

Driver strains

PS6844 syIs301[myo-2p::NLS::GAL4SC::VP64::unc-54 3’UTR + unc-122p::RFP + 1kb DNA ladder (NEB)] V

PS7169 syIs398[hsp16.41p::NLS::GAL4SK::VP64::let-858 3’UTR + unc-122p::RFP + 1kb DNA ladder(NEB)]   syIs337[15xUAS::Δpes-10::GFP::let-858 3’UTR + ttx-3p::RFP + 1kb DNA ladder(NEB)] III

PS7172 syIs401[hsp16.41p::NLS::GAL4SK::VP64::let-858 3’UTR + unc-122p::RFP + 1kb DNA ladder(NEB)]   syIs337[15xUAS::Δpes-10::GFP::let-858 3’UTR + ttx-3p::RFP + 1kb DNA ladder(NEB)] III

PS6961 syIs334[rab-3p::NLS::GAL4SK::VP64::let-858 3’UTR + unc-122p::RFP +  pBlueScript] X

PS6935 syIs320[nlp-40p::NLS::GAL4SK::VP64::unc-54 3’UTR + myo-2p::NLS::mCherry + pBlueScript] V

PS6936 syIs321[myo-3p::NLS::GAL4SK::VP64::unc-54 3’UTR + myo-2p::NLS::mCherry + pBlueScript] I

Mapping strains

DA438 bli-4(e937) I; rol-6(e187) II; daf-2(e1368) vab-7(e1562) III; unc-31(e928) IV; dpy-11(e224) V; lon-2(e678) X

Wild type N2

References

Avery, L. The genetics of feeding in Caenorhabditis elegans. Genetics. 1993 April;133(4): 897-917.
PubMed | PubMed Central
Wang H, Liu J, Gharib S, Chai CM, Schwarz EM, Pokala N, Sternberg PW. cGAL, a temperature-robust GAL4‑UAS system for Caenorhabditis elegans. Nat Methods. 2017 Feb;14(2):145-148.
10.1038/nmeth.4109 | PubMed | PubMed Central

Funding

Howard Hughes Medical Institute (grant number 047-101)

Reviewed By

Michael Ailion

History

Received: June 1, 2017
Accepted: June 26, 2017
Published: July 6, 2017

Copyright

© 2017 by the authors. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation

Walton, SJ; Wang, H; Liu, J; Sternberg, P (2017). Mapping results for a set of cGAL effectors and drivers. microPublication Biology. 10.17912/W2Q947.
Download: RIS BibTeX
microPublication Biology is published by
1200 E. California Blvd. MC 1-43 Pasadena, CA 91125
The microPublication project is supported by
The National Institute of Health -- Grant #: 1U01LM012672-01
microPublication Biology:ISSN: 2578-9430