
Mutations in KCNQ potassium channels cause pharyngeal pumping defects in *C. elegans*

Yoanne Clovis¹, Alexis Webb¹, Carl Turner¹, and Bill Roberts¹

1. NemaMetrix, Inc,. 44 W 7th Ave., Eugene, OR 97401 USA. www.nemametrix.com

Description:

Pumps were stimulat^r NemaMetrix Scree^r <u>1(aw3)</u> and <u>kqt-</u>? A) Pump freo^r increase in pu. B) Microfluidic . drops in frequency. C) Overlay of first 50 p.

than in N2s. Pumps are she

.d as electropharyngeograms (EPGs) for 2 minutes in a .alysis software (NemaMetrix). The null mutant strains <u>kqt-</u>.guan Wei (Wei et al., 2002)

if it is a number of the set of

pumping pattern in <u>kqt-1(aw3</u>) mutants is arrhythmic, with frequent

.ngs show that pump duration is higher in <u>kqt-1(aw3)</u> and <u>kqt-3(aw1)</u> animals .ed on E spikes, which occur when the pharynx is fully contracted.

D) Duration histogram illust. \mathcal{L} the probability of occurrence of inter-pump interval (E to E duration) for each mutant strain. Histograms were binned to 4 ms width and normalized to reach an area underneath the curve equal to 1 (duration 100% likelihood to occur). In <u>kqt-1(aw3)</u>) animals, the time between two pumps is significantly increased compared to N2s (p < 0.01).

References

Wei, A., Yuan, A., Fawcett, G., Butler, A., Davis, T., Xu, S. Y., & Salkoff, L. Efficient isolation of targeted *Caenorhabditis elegans* deletion strains using highly thermostable restriction endonucleases and PCR. *Nucleic Acids Res.* 30, e110 (2002).

Reagents

Molecule: <u>Serotonin</u> Control Strain: <u>N2</u>

Funding: Reviewed by Daniel Williams 11/10/2016 – Open Access

Received 10/21/2016, **Accepted** 11/03/2016. **Available** starting <u>WormBase</u> release WS258, **Published Online** 11/10/2016.

Copyright: © 2016. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation: Clovis, Y; Webb, A; Turner C; Roberts B. (2016): Mutations in KCNQ potassium channels cause pharyngeal pumping defects in C. elegans. WormBase. Dataset. <u>http://doi.org/10.17912/W2MW2D</u>